Tutorial 2: Worked Examples

Image credit: Leon Wu

Introduction

This is the second tutorial of common problems in Statistics alongside their suggested solutions. No particular level is the target. Thus, you may find any of the problems to be at any of the levels (undergrad, master’s, or doctoral level). For example, the first question comes from the University of South Carolina, Department of Statistics (PhD level). In some cases, it may be difficult to cite the exact source of the question. So in cases where I am certain of the original source of the question, I would do my best to cite the source of it. If you feel any of the sources is not properly cited, please draw my attention to it.

Problem 1

Suppose X1,X2,X3,,Xn is an iid sample from uniform distribution over (θ,θ+|θ|), where θ0.

a). Find the method of moments estimator of θ,

b). Find the maximum likelihood estimator (MLE) of θ.

Source

University of South Carolina, PhD Qualifying Exams

Solution

a).

Given that XiiidUnif(θ,θ+|θ|),θ0. For moments, generally, Mk=1ni=1nXik is the kth sample moment, for k=1,2,. This implies M1=1ni=1nXi=X¯

E(X)=M1=θ+θ+|θ|2=M1=θ+|θ|2=M1=32θI(θ>0)+θ2I(θ<0) Note that M1=X¯,andP(X¯>0|θ>0)=P(X¯<0|θ<0)=1. Solving for each condition (on θ0), we have; θ^=23X¯I(X¯>0)+2X¯I(X¯<0)

b).

The distribution of Xi can be considered for both sides (i.e, θ>0 and θ<0 such that; Xi{Uniform(θ,2θ)ifθ>0Uniform(θ,0)ifθ<0 Their likelihood functions are thus, fX(x;θ)={1θnI(X(n)2θX(1))ifθ>01|θn|I(θX(1))ifθ<0 The maximum likelihood estimator, θ, is therefore the *order statistic*; {argmaxθ>0fX(x;θ)=X(n)2argmaxθ>0fX(x;θ)=X(1)

θ^MLE=X(n)2I(X1>0)+X(n)I(X1<0)

Problem 2

The density function of a random variable is f(x)={481x(9x2),0x3 0,elsewhere

a) Find the mode, b) the median, c) compare the mode, median, and median

Source

Dokuz Eylul University, Assignment

Solution

Check to see if there exists a mode, equate f(x) to zero (maximum value), checking that f(x)<0 f(x)=481x(9x2)f(x)=f(x)x=181(3612x2)f(x)=24x81<0(mode extists)

a). mode

f(x)=0481(93x2)=0x=3

b). median

F(m)=0.5P(xm)=0.5=4810m(9xx3)=0.5=481(92x214x4)|0m=0.5=72m24m4=162=2m436m2+81=0 Solving the quadratic equation in m2, i.e., (ax2+bx+c=0);

m2=b±b24ac2a=36±3624281281=9922or9+922m2=9922m=99/22=1.6236the median is1.6236

c). comparison

E(X)=f(x)dx=03x481x(9x2)dx=481(3x3+15x5)|03=1.60

Since mean<median<mode, the distribution of X is said to be skewed to the left.

Problem 3

Let X¯ and S2 be the mean and variance of a random sample of size 25 and XN(3,100). Find P(0<X¯<6,55.22<S2<145.6)

Source

Exact source not clear

Solution

μ=3,σ2=100. Since X¯ and S2 are independent, we have; P(0<X¯<6,55.22<S2<145.6)=P(0<X¯<6)×P(55.22<S2<145.6) P(0<X¯<6)=P(0310025<z<6310025)=P(1.5<z<1.5)=0.8664 

P(55.22<S2<145.6)=P(155.2×25100<nS2σ2<145.6×25100)=P(13.8<χ242<36.8)=0.950.05=0.90

P(0<X¯<6,55.22<S2<145.6)=0.86640.90=0.8231

Did you find this post helpful? Consider sharing it😊😊😊

Abubakari Sumaila Salpawuni
Abubakari Sumaila Salpawuni
PhD candidate (Biostatistics)

My research interests include the applications of survival analysis in Medicine, sequential decision processes, dynamics of visualizations in R and Python.